Maize-based Agricultural Ecosystems US-Ne1, US-Ne2, US-Ne3

Andy Suyker
Ameriflux Data Managers Workshop
February 12-13, 2014

Funding Agencies:

DOE OBER

NASA

UNL

Google Earth 4/9/2013

c/o Delores Pittman

Fluxes:

F_c - CO₂ flux

ET – evapotranspiration

H – sensible heat flux

Environmental parameters:

CO₂ conc. profile Precipitation Windspeed Air temperature Humidity Soil heat flux Soil temperature Soil moisture

Radiative Fluxes: **Net Radiation** Incident/reflected PAR Incident/ reflected solar Diffuse PAR **Absorbed PAR** reflectance

Multispectral band

Biological Parameters

Data collected from intensive measurement zones (IMZ)'s representative of soil classes distributed across the field

Total/green leaf area (destructive)
Above ground biomass (dry and fresh)
Grain/cob/husk biomass
Surface Residue removed

Other Parameters
Leaf gas exchange
N₂O and CH₄ and soil surface CO₂ flux
(chambers)
Decomposition studies

Research Components

Tower eddy covariance fluxes of CO₂, water vapor and energy: Shashi Verma, Andy Suyker

Monitoring and mapping soil C stocks: Dan Walters

Litter decomposition: Jean Knops

Above biomass and leaf area index: Timothy Arkebauer

Leaf gas exchange: Timothy Arkebauer

Soil surface fluxes of CO₂, N₂O and CH₄: *Timothy Arkebauer*

Belowground processes: Dan Walters

Monitoring soil water: Ken Hubbard

Ecosystem modeling: Haishun Yang, Ken Cassman

Remote sensing: Anatoly Gitelson, Betty Walter-Shea

Life Cycle Analyses: Adam Liska

School	of N	latural	Resour	291
DCHOOL		iaiui ai	TYC20 UT	

Management Practices

	Planting density (plants/ha)	Fertilization	Tillage	
Site 1	~80,000 maize	Spring UAN Fertigation	Conservation tillage after 2005	
Site 2	~80,000 maize (odd years)	Spring UAN Fertigation	Conservation tillage after 2010	
Continuous maize beginning 2010 w biomass removal				
	~300,000 soybean (even years)			
Site 3	~55,000 maize (odd years) ~300,000 soybean (even years)	Spring UAN	Strictly no till	

2nd Generation Biofuel Biomass Removal Project from 2010-2013 at Site 2 Irrigated maize-soybean converted to irrigated continuous maize (with conservation tillage)

Severe Hailstorm September 15, 2010

Site 1: Yield was 16% of estimated value

Site 2: Yield was 50% of estimated value

Site 1 Irrigated Continuous Maize

$$NBP = NEP - C_g$$

$$= -9.4 t C ha^{-1}$$

Site 2 Irrigated Maize-Soybean

$$NBP = NEP - C_g - R_s$$

$$= 37.3 - 44.3 - 5.5$$

$$= -12.5 t C ha^{-1}$$

Site 3 Rainfed Maize-Soybean

University of Nebraska-Lincoln

 $NBP = NEP - C_g$

= 29.7- 31.0

 $= -1.3 \text{ t C ha}^{-1}$

Data Processing:

Hour long block averaging periods Frequency response corrections including tube attenuation (Moore, 1986; Massman, 1991)

Angle of Attack (Nakai et al., 2006) Stationarity (Foken et al., 2004) and other quality control flags (skewness, kurtosis, standard deviation)

M